8 research outputs found

    Experiments on a real-time energy management system for islanded prosumer microgrids

    Get PDF
    This paper presents an experimental demonstration of a novel real-time Energy Management System (EMS) for inverter-based microgrids to achieve optimal economic operation using a simple dynamic algorithm without offline optimization process requirements. The dynamic algorithm solves the economic dispatch problem offering an adequate stability performance and an optimal power reference tracking under sudden load and generation changes. Convergence, optimality and frequency regulation properties of the real-time EMS are shown, and the effectiveness and compatibility with inner and primary controllers are validated in experiments, showing better performance on optimal power tracking and frequency regulation than conventional droop control power sharing techniques

    Cyber Physical Energy Systems Modules for Power Sharing Controllers in Inverter Based Microgrids

    Get PDF
    The Microgrids (MGs) are an effective way to deal with the smart grid challenges, including service continuity in the event of a grid interruption, and renewable energy integration. The MGs are compounded by multiple distributed generators (DGs), and the main control goals are load demand sharing and voltage and frequency stability. Important research has been reported to cope with the implementation challenges of the MGs including the power sharing control problem, where the use of cybernetic components such as virtual components, and communication systems is a common characteristic. The use of these cybernetic components to control complex physical systems generates new modeling challenges in order to achieve an adequate balance between complexity and accuracy in the MG model. The standardization problem of the cyber-physical MG models is addressed in this work, using a cyber-physical energy systems (CPES) modeling methodology to build integrated modules, and define the communication architectures that each power sharing control strategy requires in an AC-MG. Based on these modules, the control designer can identify the signals and components that eventually require a time delay analysis, communication requirements evaluation, and cyber-attacks’ prevention strategies. Similarly, the modules of each strategy allow for analyzing the potential advantages and drawbacks of each power sharing control technique from a cyber physical perspective

    A novel compact dq-reference frame model for inverter-based microgrids

    Get PDF
    The development and the experimental validation of a novel dynamic model of an islanded three-phase Inverter-based Microgrid (IMG) is presented in this paper. The proposed model reproduces the relevant system dynamics without excessive complexity and enough accuracy. The dynamics of the IMG are captured with a compact and scalable dynamic model, considering inverter based distributed generators with d-current droop primary and proportional resonant inner controllers. The complete development of the model, the practical assumptions, and the accurate proportional power sharing of the primary control technique are shown. The accuracy performance was verified in experiments performed at the Aalborg Intelligent Microgrids Laboratory for an islanded IMG case
    corecore